精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆与曲线的交点为,求面积的最大值.

 

【答案】

(1);(2).

【解析】

试题分析:(1)根据抛物线的焦点是椭圆的短轴长,可以求出,再根据离心率,从而能够求出;(2)设出点坐标,从而写出的方程,根据椭圆的对称性能够表示出的面积,联立直线与椭圆,求出代入到的面积,进一步表示出面积,根据均值不等式能够求出面积的最大值.

试题解析:(1)抛物线的焦点为,∴

又椭圆离心率,∴

所以椭圆的方程为

(2)设点,则,连轴于点

由对称性知:

     得:

(当且仅当时取等号)

面积的最大值为.

考点:椭圆标准方程的求解,直线与椭圆的位置关系.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案