在中.由已知.由余弦定理. 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱ABC-A1B1C1的三视图如图所示,且D是BC的中点,
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由。

查看答案和解析>>

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在点N,使DN∥平面AMC,若存在,确定点N位置;若不存在,说明理由.

查看答案和解析>>

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在点N,使DN∥平面AMC,若存在,确定点N位置;若不存在,说明理由.

查看答案和解析>>

已知向量=(),=(,),其中().函数,其图象的一条对称轴为

(I)求函数的表达式及单调递增区间;

(Ⅱ)在△ABC中,abc分别为角A、B、C的对边,S为其面积,若=1,b=l,S△ABC=,求a的值.

【解析】第一问利用向量的数量积公式表示出,然后利用得到,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。

解:因为

由余弦定理得,……11分故

 

查看答案和解析>>

已知三棱柱ABC-A1B1C1三视图如下图所示,其中俯视图是等腰直角三角形,正、侧视图都是正方形,DE分别为棱CC1B1C1的中点.

(1)求异面直线BDA1E所成角的余弦值;

(2)在棱AC上是否存在一点F,使EF⊥平面A1BD,若存在,确定点F的位置;若不存在,说明理由.

查看答案和解析>>


同步练习册答案