题目列表(包括答案和解析)
通过研究学生的学习行为,心理学家发现:学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲课开始时,学生的兴趣激增;中间有一小段时间,学生的兴趣保持较理想状态,随后学生的注意力开始分散.研究结果表明:若用f(x)表示学生接受和掌握概念的能力(f(x)的值越大,表示接受的能力越强),用x表示提出和讲授概念的时间(单位:分钟),可有以下的公式:f(x)=![]()
(1)讲课开始后多少分钟,学生的接受能力最强?能维持多长时间?
(2)讲课开始后5分钟与讲课开始后20分钟比较,何时学生的接受能力更强?
(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能否在学生一直处于所需接受能力的状态下讲完这个难题?
| x2-8x+20 |
| x2+1 |
| 2 |
已知函数
.
(1)求
在区间
上的最大值;
(2)若函数
在区间
上存在递减区间,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数
,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在
上存在递减区间,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上为增函数,在
上为减函数,
.
…………6分
(2)![]()
在
上存在递减区间,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,实数
的取值范围为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com