题目列表(包括答案和解析)
记数列{
}的前n项和为为
,且
+
+n=0(n∈N*)恒成立.
(1)求证:数列
是等比数列;
(2)已知2是函数f(x)=
+ax-1的零点,若关于x的不等式f(x)≥
对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
记数列{
}的前n项和为为
,且
+
+n=0(n∈N*)恒成立.
(1)求证:数列
是等比数列;
(2)已知2是函数f(x)=
+ax-1的零点,若关于x的不等式f(x)≥
对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
数列
的前n项和记为
,![]()
(1)t为何值时,数列
是等比数列?
(2)在(1)的条件下,若等差数列
的前n项和
有最大值,且
,又
成等比数列,求
。
数列
的前n项和记为
,
,点
在直线
上,n∈N*.
(1)求证:数列
是等比数列,并求数列
的通项公式
;
(2)设
,
是数列
的前n项和,求
的值.
1-10.CDBBA CACBD
11.
12. ①③④ 13.-2或1 14.
、
15.2 16.
17.
.
18.
解:(1)由已知
7分
(2)由
10分
由余弦定理得
14分
19.(1)证明:∵PA⊥底面ABCD,BC
平面AC,∴PA⊥BC, 3分
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC. 5分
(2)解:过C作CE⊥AB于E,连接PE,
∵PA⊥底面ABCD,∴CE⊥面PAB,
∴直线PC与平面PAB所成的角为
, 10分
∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,
中求得CE=
,∴
. 14分
20.解:(1)由
①,得
②,
②-①得:
. 4分
(2)由
求得
. 7分
∴
,
11分

∴
.
14分
21.解:
(1)由
得c=1 1分
, 4分
|