精英家教网 > 高中数学 > 题目详情

记数列{}的前n项和为为,且+n=0(n∈N*)恒成立.
(1)求证:数列是等比数列;
(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.

(Ⅰ)见解析;(II)的取值范围.

解析试题分析:(Ⅰ)利用间的关系解答,写出相减,然后根据等比数列定义确定答案;(II)利用(Ⅰ)的结果和等比数列通项公式求出,然后构造出不等式,求出解关于的不等式得出答案.
试题解析:(Ⅰ) 时,,两式相减可得,
是以为首项,为公比的等比数列.     6分
(II)由(Ⅰ)可得,

上恒成立,由,即
即所求的取值范围.    12分
考点:等比数列定义和通项公式、函数最值、一元二次不等式解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

计算:(1);   (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:.
(Ⅰ)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(Ⅱ)若,函数上的上界是,求的取值范围;
(Ⅲ)若函数上是以为上界的有界函数, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求的值;
(Ⅱ)证明函数上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:
(1)写出国庆节这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出自变量x的取值范围;
(2)如果国庆节这天停放的小车辆次占停车总辆次的65%~85%,请你估计国庆节这天该停车场收费金额的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票。股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价(元)和时间的关系在段可近似地用解析式来描述,从点走到今天的点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且点和点正好关于直线对称。老张预计这只股票未来的走势如图中虚线所示,这里段与段关于直线对称,段是股价延续段的趋势(规律)走到这波上升行

情的最高点。现在老张决定取点,点,点来确定解析式中的常数,并且求得
(Ⅰ)请你帮老张算出,并回答股价什么时候见顶(即求点的横坐标)
(Ⅱ)老张如能在今天以点处的价格买入该股票3000股,到见顶处点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q亿元),它们与投资额t(亿元)的关系有经验公式其中,今该公司将5亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元),
(1)求y关于x的解析式,
(2)怎样投资才能使总利润最大,最大值为多少?.

查看答案和解析>>

同步练习册答案