精英家教网 > 高中数学 > 题目详情

停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:
(1)写出国庆节这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出自变量x的取值范围;
(2)如果国庆节这天停放的小车辆次占停车总辆次的65%~85%,请你估计国庆节这天该停车场收费金额的范围.

(1);(2)

解析试题分析:(1)由题意可知,当小车停放辆次为辆时,大车停放辆次为辆,因为大车每辆次10元,小车每辆次5元,则可得之间的函数关系式,注意自变量的取值范围;(2)由题意可求得自变量的取值范围,又由(1)整理得该函数为减函,即可求得的取值范围.
试题解析:(1)依题得     6分
(2)    8分
上为减函数,  10分
       12分
   13分
答:估计国庆节这天该停车场收费金额的范围是[6900,8100]14分
考点:1.函数模型在实际生活中的应用;2.函数单调性、值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,对任意都有,且
(1)求函数的解析式;
(2)是否存在实数,使函数上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记数列{}的前n项和为为,且+n=0(n∈N*)恒成立.
(1)求证:数列是等比数列;
(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(Ⅰ)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.
(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;
(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上有最大值4,最小值1,
(Ⅰ)求的值。
(Ⅱ)设不等式在区间上恒成立,求实数k的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,为自然对数的底)
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值;
(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案