已知函数满足,对任意都有,且.
(1)求函数的解析式;
(2)是否存在实数,使函数在上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.
(1);(2)存在实数,.
解析试题分析:(1)根据 求得;
根据对任意,有,确定图像的对称轴为直线,求得;
利用对任意都有,转化成对任意成立,解得.
(2)化简函数 ,其定义域为,
令,利用复合函数的单调性,得到求解,得,肯定存在性.
试题解析:
(1)由及 ∴ 1分
又对任意,有
∴图像的对称轴为直线,则,∴ 3分
又对任意都有,
即对任意成立,
∴,故 6分
∴ 7分
(2)由(1)知 ,其定义域为 8分
令
要使函数在上为减函数,
只需函数在上为增函数, 11分
由指数函数的单调性,有,解得 13分
故存在实数,当时,函数在上为减函数 14分
考点:二次函数的图象和性质,待定系数法,复合函数的单调性,对数函数的性质.
科目:高中数学 来源: 题型:解答题
已知函数,点、在函数的图象上,
点在函数的图象上,设.
(1)求数列的通项公式;
(2)记,求数列的前项和为;
(3)已知,记数列的前项和为,数列的前项和为,试比较与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费
(Ⅰ)设每月用电度,应交电费元,写出关于的函数;
(Ⅱ)已知小王家第一季度缴费情况如下:
月份 | 1 | 2 | 3 | 合计 |
缴费金额 | 87元 | 62元 | 45元8角 | 194元8角 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称是上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:,.
(Ⅰ)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(Ⅱ)若,函数在上的上界是,求的取值范围;
(Ⅲ)若函数在上是以为上界的有界函数, 求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:
(1)写出国庆节这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出自变量x的取值范围;
(2)如果国庆节这天停放的小车辆次占停车总辆次的65%~85%,请你估计国庆节这天该停车场收费金额的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(Ⅰ)若函数的图象与轴无交点,求的取值范围;
(Ⅱ)若函数在上存在零点,求的取值范围;
(Ⅲ)设函数,.当时,若对任意的,总存在,使得,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com