精英家教网 > 高中数学 > 题目详情

已知函数满足,对任意都有,且
(1)求函数的解析式;
(2)是否存在实数,使函数上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.

(1);(2)存在实数.

解析试题分析:(1)根据 求得
根据对任意,有,确定图像的对称轴为直线,求得
利用对任意都有,转化成对任意成立,解得.
(2)化简函数 ,其定义域为
,利用复合函数的单调性,得到求解,得,肯定存在性.
试题解析:
(1)由 ∴      1分
又对任意,有
图像的对称轴为直线,则,∴       3分
又对任意都有
对任意成立,
,故                                  6分
                                              7分
(2)由(1)知 ,其定义域为     8分

要使函数上为减函数,
只需函数上为增函数,               11分
由指数函数的单调性,有,解得           13分
故存在实数,当时,函数上为减函数      14分
考点:二次函数的图象和性质,待定系数法,复合函数的单调性,对数函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,点在函数的图象上,
在函数的图象上,设
(1)求数列的通项公式;
(2)记,求数列的前项和为
(3)已知,记数列的前项和为,数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费
(Ⅰ)设每月用电度,应交电费元,写出关于的函数;
(Ⅱ)已知小王家第一季度缴费情况如下:

月份
1
2
3
合计
缴费金额
87元
62元
45元8角
194元8角
问:小王家第一季度共用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若有最小值为-12,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:.
(Ⅰ)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(Ⅱ)若,函数上的上界是,求的取值范围;
(Ⅲ)若函数上是以为上界的有界函数, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.根据预计,解答下面的问题:
(1)写出国庆节这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出自变量x的取值范围;
(2)如果国庆节这天停放的小车辆次占停车总辆次的65%~85%,请你估计国庆节这天该停车场收费金额的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(Ⅰ)若函数的图象与轴无交点,求的取值范围;
(Ⅱ)若函数上存在零点,求的取值范围;
(Ⅲ)设函数.当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

同步练习册答案