22.已知抛物线:的准线与轴交于点.为抛物线的焦点.过点斜率为的直线与抛物线交于.两点. 查看更多

 

题目列表(包括答案和解析)

已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为

(1)当时,求椭圆的标准方程;

(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

 

查看答案和解析>>

已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程

查看答案和解析>>

已知抛物线y2=2px(p>0)的准线与x轴交于点M,
(1)若M点的坐标为(-1,0),求抛物线的方程;
(2)过点M的直线l与抛物线交于两点P、Q,若
FP
FQ
=0
(其中F是抛物线的焦点),求证:直线l的斜率为定值.

查看答案和解析>>

已知抛物线C1:y2=4mx(m>0)的焦点为F2,其准线与x轴交于点F1,以F1,F2为焦点,离心率为
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的标准方程及其右准线的方程;
(2)用m表示P点的坐标;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

已知抛物线C:y2=mx(m≠0)的准线与直线l:kx-y+2k=0(k≠0)的交点M在x轴上,l与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).
(1)求抛物线C的方程;
(2)求实数p的取值范围;
(3)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.

查看答案和解析>>

一.选择题 (本大题共10小题,每题5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空题 (本大题共7小题,每题4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答题 (本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)

18.解:(1)因为,所以,…………3分

    得

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      当时,…………………2分

     ∴,即

    ∴是公比为3的等比数列…………………2分

(2)由(1)得:…………………2分

的公差为), ∵,∴………………2分

依题意有

,得,或(舍去)………………2分

………………2分

 

20.解(1)

由三视图知:侧棱

………………2分

,又,∴   ①………………2分

为正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中点,连结,由题意知,∴

由三视图知:侧棱,∴平面平面

平面

就是与面所成角的平面角………………3分

。故,又正方形

中,∴,∴

………………3分

综上知与面所成角的大小的余弦值为

21.解(1)当时,,………………1分

………………2分

∴当,此时为减函数,………………1分

,些时为增函数………………1分

时,求函数的最大值………………2分

(2)………………1分

①当时,在

上为减函数,∴,则

………………3分

②当时,

上为减函数,则

上为增函数,在上为减函数,在上为增函数,则

,∴………………3分

综上可知,的取值范围为………………1分

 

22.(1)记A点到准线距离为,直线的倾斜角为

由抛物线的定义知,………………………2分

………………………3分

(2)设

,………………………2分

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得

得,

的取值范围为…………………………2分

 

命题人

吕峰波(嘉兴)  王书朝(嘉善)  王云林(平湖)

胡水林(海盐)  顾贯石(海宁)  张晓东(桐乡)

     吴明华、张启源、徐连根、洗顺良、李富强、吴林华

 

 

 


同步练习册答案