(2)设是数列的前项和.问是否存在常数.使得对任意都成立.若存在.求出的取值范围,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

 设数列的各项都是正数,且对任意,都有,记为数列的前项和.

(1)求证;   

(2)求数列的通项公式;

(3)若为非零常数,,问是否存在整数,使得对任意,都有.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

设数列{an}的各项都是正数,记Sn为数列{an}的前n项和,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn

查看答案和解析>>

设数列{an}的各项都是正数,且对任意n∈N*,都有a13+a23+a33+…+=Sn2,其中Sn为数列{an}的前n项和.
(I)求证:an2=2Sn-an
(II)求数列{an}的通项公式;
(III)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-2a1,Sn,2an+1成等差数列.
(1)当a1=2时,求{an}的通项公式;
(2)当a1=2时,设bn=log2 (an2)-1,若对于n∈N*,
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
<k恒成立,求实数k的取值范围;
(3)设cn=Sn+1,问:是否存在a1,使数列{cn}为等比数列?若存在,求出a1的值,若不存在,请说明理由.

查看答案和解析>>

设数列{an}的各项都是正数,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn

查看答案和解析>>


同步练习册答案