ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÆäÖÐan¡Ù0£¬a1Ϊ³£Êý£¬ÇÒ-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁУ®
£¨1£©µ±a1=2ʱ£¬Çó{an}µÄͨÏʽ£»
£¨2£©µ±a1=2ʱ£¬Éèbn=log2 £¨an2£©-1£¬Èô¶ÔÓÚn¡ÊN*£¬
1
b1b2
+
1
b2b3
+
1
b3b4
+¡­+
1
bnbn+1
£¼kºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨3£©Éècn=Sn+1£¬ÎÊ£ºÊÇ·ñ´æÔÚa1£¬Ê¹ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öa1µÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖÐ-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁУ¬¿ÉµÃSn=an+1-a1£¬½ø¶ø¿ÉµÃan+1=2an£¬½áºÏa1=2ʱ£¬¿ÉµÃ{an}µÄͨÏʽ£»
£¨2£©ÓÉ£¨1£©½áºÏ¶ÔÊýµÄÔËËãÐÔÖÊ£¬¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬½ø¶øÀûÓòðÏî·¨¿ÉÇó³ö
1
b1b2
+
1
b2b3
+
1
b3b4
+¡­+
1
bnbn+1
µÄ±í´ïʽ£¬½ø¶ø¿ÉµÃʵÊýkµÄȡֵ·¶Î§£»
£¨3£©ÓÉcn=a1¡Á2n-a1+1£¬½áºÏµÈ±ÈÊýÁе͍Ò壬¿ÉµÃµ±ÇÒ½öµ±-a1+1=0ʱ£¬ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ®
½â´ð£º½â£º£¨1£©¡ß-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁÐ
¡à2Sn=-2a1+2an+1£¬
¡àSn=an+1-a1£¬¡­¢Ù
µ±n¡Ý2ʱ£¬Sn-1=an-a1£¬¡­¢Ú
Á½Ê½Ïà¼õµÃ£ºan=an+1-an£¬
¼´an+1=2an£¬------£¨2·Ö£©
µ±n=1ʱ£¬S1=a2-a1£¬¼´a2=2a1£¬
ÊʺÏan+1=2an£¬-------------£¨3·Ö£©
ËùÒÔÊýÁÐ{an}ÊÇÒÔa1=2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔan=2n---------------------------------------------------£¨4·Ö£©
£¨2£©ÓÉ£¨1£©µÃan=2n£¬ËùÒÔbn=log2 £¨an2£©-1=2n-1
¡à
1
b1b2
+
1
b2b3
+
1
b3b4
+¡­+
1
bnbn+1
=
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
=
1
2
[£¨1-
1
3
£©+£¨
1
3
-
1
5
£©+£¨
1
5
-
1
7
£©+¡­+£¨
1
2n-1
-
1
2n+1
£©]=
1
2
£¨1-
1
2n+1
£©
¡ßn¡ÊN*£¬
¡à
1
2
£¨1-
1
2n+1
£©£¼
1
2

Èô¶ÔÓÚn¡ÊN*£¬
1
b1b2
+
1
b2b3
+
1
b3b4
+¡­+
1
bnbn+1
£¼kºã³ÉÁ¢£¬
¡àk¡Ý
1
2
-----------------£¨8·Ö£©
£¨ 3£©ÓÉ£¨1£©µÃÊýÁÐ{an}ÊÇÒÔa1ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ
ËùÒÔcn=Sn+1=
a1(1-2n)
1-2
+1
=a1¡Á2n-a1+1--------------------------£¨10·Ö£©
Ҫʹ{cn}ΪµÈ±ÈÊýÁУ¬µ±ÇÒ½öµ±-a1+1=0
¼´a1=1
ËùÒÔ´æÔÚa1=1£¬Ê¹{cn}ΪµÈ±ÈÊýÁÐ--------------------------------£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǵȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ£¬ÊýÁÐÇóºÍ£¬ºã³ÉÁ¢ÎÊÌ⣬ÊÇÊýÁеÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒSn=3n+1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=an£¨2n-1£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐanµÄǰnÏîµÄºÍΪSn£¬a1=
3
2
£¬Sn=2an+1-3
£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÇóÊýÁÐanµÄͨÏʽ£»
£¨3£©Éèbn=(2log
3
2
an+1)•an
£¬ÇóÊýÁÐbnµÄǰnÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an+
3
2
¡Á£¨-1£©n-
1
2
£¬n¡ÊN*£®
£¨¢ñ£©ÇóanºÍan-1µÄ¹ØÏµÊ½£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Ö¤Ã÷£º
1
S1
+
1
S2
+¡­+
1
Sn
£¼
10
9
£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ×é
x¡Ý0
y¡Ý0
nx+y¡Ü4n
Ëù±íʾµÄÆ½ÃæÇøÓòΪDn£¬ÈôDnÄÚµÄÕûµã£¨Õûµã¼´ºá×ø±êºÍ×Ý×ø±ê¾ùΪÕûÊýµÄµã£©¸öÊýΪan£¨n¡ÊN*£©
£¨1£©Ð´³öan+1ÓëanµÄ¹ØÏµ£¨Ö»Ðè¸ø³ö½á¹û£¬²»ÐèÒª¹ý³Ì£©£¬
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèÊýÁÐanµÄǰnÏîºÍΪSnÇÒTn=
Sn
5•2n
£¬Èô¶ÔÒ»ÇеÄÕýÕûÊýn£¬×ÜÓÐTn¡Üm³ÉÁ¢£¬ÇómµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ö£ÖÝһ죩ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2n-1£¬Ôò
S4
a3
µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸