已知为常数且,求使成立的的范围. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x a b c a+b+c
f(x) d d t 4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

已知常数a≠0,数列{an}前n项和为Sn,且Sn=an2-(a-1)n
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)若an≤2n3-13n2+11n+1对任意的正整数n恒成立,求实数a的取值范围;
(Ⅲ)若a=
1
2
,数列{cn}满足:cn=
an
an+2012
,对于任意给定的正整数k,是否存在p,q∈N*,使得ck=cp•cq?若存在,求出p,q的值(只要写出一组即可);若不存在说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Sn,若a1=1,Sn=nan-n(n-1),n∈N*,令bn=
1
anan+1
,且数列{bn}的前项和为Tn
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若不等式λTn
n+8
5
(λ为常数)对任意正整数n均成立,求λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=
ex
x-a
(其中a为常数,且a<0).
(1)求函数f(x)的定义域及单调区间;
(2)若存在实数x∈(a,0],使得不等式f(x)≤
1
e
成立,求a的取值范围.

查看答案和解析>>


同步练习册答案