--5分又AB∩AV=A ∴AB⊥平面VAD----------6分 查看更多

 

题目列表(包括答案和解析)

是两个不共线的非零向量.

(1)若===,求证:ABD三点共线;

(2)试求实数k的值,使向量共线. (本小题满分13分)

【解析】第一问利用=()+()+==得到共线问题。

第二问,由向量共线可知

存在实数,使得=()

=,结合平面向量基本定理得到参数的值。

解:(1)∵=()+()+

==    ……………3分

     ……………5分

又∵ABD三点共线   ……………7分

(2)由向量共线可知

存在实数,使得=()   ……………9分

=   ……………10分

又∵不共线

  ……………12分

解得

 

查看答案和解析>>

设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;

   (Ⅰ)(本问5分)求实数a、b的值;

   (Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),

         证明:

查看答案和解析>>

精英家教网如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P-CD-B为45°.
(1)求证:AF∥平面PEC;
(2)求证:平面PEC⊥平面PCD;
(3)设AD=2,CD=2
2
,求点A到平面PEC的距离.

查看答案和解析>>

如图,三棱锥A-BCD中,AB⊥平面BCD,BC=DC=1,∠BCD=90°,E,F分别是AC,AD上的动点,且EF∥平面BCD,二面角B-CD-A为60°.
(1)求证:EF⊥平面ABC;k*s*5*u
(2)若BE⊥AC,求直线BF与平面ACD所成角的余弦值.

查看答案和解析>>

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>


同步练习册答案