.CD⊥平面α时射影面积最小,CD//α时射影面积最大. 查看更多

 

题目列表(包括答案和解析)

(2013•绍兴一模)如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于(  )

查看答案和解析>>

(2005•海淀区二模)如图所示,在△ABC中,AC=BC=1,∠ACB=90°,点D在斜边AB上,∠BCD=α(0<α<
π2
).把△ABC沿CD折起到△B′CD的位置,使平面B′CD⊥平面ACD
(Ⅰ)求点B′到平面ACD的距离(用α表示);
(Ⅱ)当AD⊥B′C时,求三棱锥B′-ACD的体积;
(Ⅲ)当点B′在平面ACD内的射影为线段CD的中点时,求异面直线AD与B′C所成角的大小.

查看答案和解析>>

一副三角板(如图),其中△ABC中,AB=AC,∠BAC=90°,△DMN 中,∠MND=90°,∠D=60°,现将两相等长的边BC、MN重合,并翻折构成四面体ABCD.CD=a
(1)当平面ABC⊥平面BCD(图(1))时,求直线AD与平面BCD所成角的正弦值
(2)当将平面ABC翻折到使A到B、C、D三点的距离相等时(图(2)),
①求证:A在平面BCD内的射影是BD的中点;
②求二面角A-CD-B的余弦值.

查看答案和解析>>

19、如图已知VC是△ABC所在平面的一条斜线,点N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC与AB之间的距离为h,点M∈VC.
(1)证明∠MDC是二面角M-AB-C的平面角;
(2)当∠MDC=∠CVN时,证明VC⊥平面AMB.

查看答案和解析>>

精英家教网如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥CD,AC⊥DB,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=
2
,PB⊥PD.
(1)求异面直线PD与BC所成角的余弦值;
(2)求二面角P-AB-C的大小;
(3)设点M在棱PC上,且
PM
MC
,问λ为何值时,PC⊥平面BMD.

查看答案和解析>>


同步练习册答案