综上所述.所求椭圆方程为 五.忽视判别式法. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

在直线l:x+y-4=0上任取一点M,过点M且以双曲线x2-
y23
=1
的焦点为焦点作椭圆.
(1)M点在何处时,所求椭圆长轴最短; 
(2)求长轴最短时的椭圆方程.

查看答案和解析>>

如图所示,已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立适当的坐标系,求椭圆方程;
(II)如果椭圆上有两点P、Q,使∠PCQ的平分线垂直于AO,证明:存在实数λ,使
PQ
AB

查看答案和解析>>

精英家教网如图所示:已知椭圆方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是椭圆与斜轴的两个交点,F是椭圆的焦点,且△ABF为直角三角形.
(1)求椭圆离心率;
(2)若椭圆的短轴长为2,过F的直线与椭圆相交的弦长为
3
2
2
,试求弦所在直线的方程.

查看答案和解析>>

已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
AP
=2
PB

(Ⅰ)求椭圆方程;
(Ⅱ)求m的取值范围.

查看答案和解析>>


同步练习册答案