A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

 

一、选择题(本大题共10小题,每小题5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空题(本大题共7小题,每小题4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答题(本大题共5小题,共72分。解答应写出文字说明、证明过程或演算过程)

18.(本小题满分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小题满分14分)

解:(I)由从而

   (II)

  ………………11分

   ………………14分

20.(本小题满分14分)

解:(1)在D1B1上取点M,使D1M=1,

连接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四边形FMBE是平行四边形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中点G,

连接HE,FE。 …………8分

∵ABCD―A1B1C1D1是直棱柱,

∴C1C⊥平面A1B1C1D1

又D1G平面A1B1C1D1

∴C1C⊥D1G,又D1G⊥B1C1

∴D1G⊥平面B1BCC1,又∵FH//D1G,

∴FH⊥平面B1BCC1

∴∠FEH即为直线EF与平面B1BCC1所成角。…………10分

21.(本小题满分15分)

解:(I)把点……1分

…………3分

   (II)当

单调递减区间是

22.(本小题满分15分)

    解:(I)设翻折后点O坐标为

  …………3分

   ………………4分

   ………………5分

综上,以  …………6分

说明:轨迹方程写为不扣分。

   (II)(i)解法一:设直线

解法二:由题意可知,曲线G的焦点即为……7分

   (ii)设直线

…………13分

故当