A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

 

一、选择题(本大题共10小题,每小题5分,共50分)

1―5 ADAAC    6―10 CBCDB

二、填空题(本大题共7小题,每小题4分,共28分)

11.    12.64    13.    14.1    15.50    16.5    17.2

三、解答题(本大题共5小题,共72分。解答应写出文字说明、证明过程或演算过程)

18.(本小题满分14分)

解:(I)    ………………2分

  ………………4分

   ………………6分

   ………………7分

   (II)当  ………………9分

   ………………12分

故函数的值域为[―1,2]。 ………………14分

解:(1)在D1B1上取点M,使D1M=1,

连接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∴FM//B1C1,FM=1, …………3分

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四边形FMBE是平行四边形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)解:过F作FH⊥DC交DC于H,过H作HM⊥DB交DB于M,

连接FM。  …………8分

∵D1D⊥平面ABCD,FH//D1D,

∴FH⊥平面ABCD,∴FH⊥DB,又DB⊥MH,

∴DB⊥平面FHM,∴DB⊥FM,

∴∠FMH即为二面角F―DB―C的平面角。  ………………10分

∵DH=1,∠HDM=60°,

又FH=2,  …………13分

   ………………14分

方法二:

   (I)证明:设BC的中点为M,连接DM,则AD⊥DM,以D为坐标原点,DA为x轴、DM为y轴、DD1为z轴,建立如图空间直角坐标系,则

又AC⊥DB,AC⊥BB1,故AC⊥平面D1DBB1

∴EF//平面B1D1DB   ………………7分

   (II)解:

   ………………9分

20.(本小题满分14分)

    解:(I)解法一:记“取出两个红球”为事件A,“取出两个白球”为事件B,“取出一红一白两球”为事件C,

   

    由题意得  …………3分

   

       ………………5分

    当   ………………6分

    综上,m=6,n=3或m=3,n=1。   ………………7分

    解法二:由已知可得取出两球同色的概率等于  ………………1分

 ……①……3分

,因此取

代入①可得;   ………………5分

; …………6分

综上,   ………………7分

   (II)当,由(I)知的可能取值为0,1,2,3,……8分

故ξ的分布列如下表:

ξ

0

1

2

3

P

                                               …………13分

  …………14分

21.(本小题满分15分)

    解:(I)设翻折后点O坐标为

  …………3分

   ………………4分

   ………………5分

综上,以  …………6分

说明:轨迹方程写为不扣分。

   (II)(i)解法一:设直线

解法二:由题意可知,曲线G的焦点即为……7分

   (ii)设直线

…………13分

故当

22.(本小题满分15分)

解:(I)(i), …………2分

   ………………3分

   (ii)由(i)知   …………6分

   …………7分

故当且仅当无零点。  …………9分

   (II)由题意得上恒成立,

   (I)当上是减函数,

   ………………11分

 

   (2)当上是减函数,

故①当

②当

   (3)当

………………13分

综上,当

故当  …………14分

又因为对于任意正实数b,不等式

                          ………………15分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

自选模块

 

题号:03

“数学史与不等式选讲”模块(10分)

    设x,y,z∈R,x2+y2+z2=1.

(Ⅰ)求x + y + z的最大值;

(Ⅱ) 求x + y的取值范围.

 

 

 

 

 

 

 

 

 

 

题号:04

“矩阵变换和坐标系与参数方程” 模块(10分)

在极坐标系中,极点为Ο.己知圆C的圆心坐标为的极坐标方程为

    (Ⅰ)求圆C的极坐标方程;

(Ⅱ)若圆C和直线l相交于A,B两点,求线段AB的长。

 

 

 

 

 

 

 

 

 

 

 

参考答案

 

题号:03

解:(I)因为

所以

有最大值    ……………………5分

   (II)解法一:因为

   ………………10分

题号:04

圆上任意一点,分别连接MD,MO,则

   (II)把圆C和直线l的极坐标方程分别化为普通方程得⊙

所以线段AB的长是   ………………10分