所以.如果存在满足条件的正整数m.则m一定是偶数. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an} 前n项和为Sn,且满足S3=a4,a3+a5=2+a4
(1)求数列{an}的通项公式;
(2)求数列{an}前2k项和S2k
(3)在数列{an}中,是否存在连续的三项am,am+1,am+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m的值;若不存在,说明理由.

查看答案和解析>>

已知数列{an}满足a1=
3
5
an+1=
3an
2an+1
,n∈N*
(1)求证:数列{
1
an
-1}
为等比数列;
(2)是否存在互不相等的正整数m,s,t,使m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t;如果不存在,请说明理由.

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

已知存在正整数k,使得对任意实数x,式子sinkx•sinkx+coskx•coskx-cosk2x的值为同一常数,则满足条件的正整数k=
3
3

查看答案和解析>>

已知m=(x-lnx-y,a),
n
=(
1
x
+lnx+15,1),其中a>0,且a≠1,当时,y关于x的函数关系式记为y=f(x);
(1)写出函数f(x)的解析式,并讨论f(x)的单调性;
(2)设函数g(x)=
(-2x3-3ax2-6ax-4a2+6a)   ex,x≤1
e•f(x),x>
1
(e是自然数的底数).是否存在正整数a,使g(x)在[-a,a]上为减函数?若存在,求出所有满足条件的正整数a;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案