例1.已知不平行....试判断: 四点共面吗?并证明你的结论. 提示:⑴可以求得.⑵四点共线.从而共面. 例2.空间四边形中.分别是.的重心.设...⑴试用向量表示向量和,⑵证明:平面. 答案:⑴., 例3.如图在正方体中.分别是棱的中点. ⑴求证:,⑵求直线与所成角的余弦值, ⑶求直线与所成角的正弦值. 答案:⑵,⑶. 查看更多

 

题目列表(包括答案和解析)

(理)已知函数数学公式
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且数学公式,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

(理)已知函数
(1)试判断f(x)的奇偶性并给予证明;
(2)求证:f(x)在区间(0,1)单调递减;
(3)如图给出的是与函数f(x)相关的一个程序框图,试构造一个公差不为零的等差数列
{an},使得该程序能正常运行且输出的结果恰好为0.请说明你的理由.
(文)如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判
断点O、G、H是否共线,并说明理由.

查看答案和解析>>

已知双曲线x2-2y2=2的左、右焦点分别是F1、F2,动点P满足|PF1|+|PF2|=4.
(1)求动点P的轨迹E的过程.
(2)设过点F2且不垂直与坐标轴的动直线a交轨迹E与A、B两点,试问在y轴上是否存在一点D使得以DA、DB为邻边的平行四边形为菱形?若存在,试判断点D的活动范围:若不存在,试说明理由.

查看答案和解析>>

已知双曲线x2-2y2=2的左、右焦点分别是F1、F2,动点P满足|PF1|+|PF2|=4.
(1)求动点P的轨迹E的过程.
(2)设过点F2且不垂直与坐标轴的动直线a交轨迹E与A、B两点,试问在y轴上是否存在一点D使得以DA、DB为邻边的平行四边形为菱形?若存在,试判断点D的活动范围:若不存在,试说明理由.

查看答案和解析>>

已知双曲线x2-2y2=2的左、右焦点分别是F1、F2,动点P满足|PF1|+|PF2|=4.
(1)求动点P的轨迹E的过程.
(2)设过点F2且不垂直与坐标轴的动直线a交轨迹E与A、B两点,试问在y轴上是否存在一点D使得以DA、DB为邻边的平行四边形为菱形?若存在,试判断点D的活动范围:若不存在,试说明理由.

查看答案和解析>>


同步练习册答案