等比数列的性质 ①,,②若.是等比数列.则.等也是等比数列, ③,④,. ⑤等比数列中仍是等比数列. ⑥等比数列当项数为时,,项数为时,. 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{an}、{bn}是两个等差数列,它们的前n项的和分别是Sn,Tn,则
an
bn
=
S2n-1
T2n-1

(1)请你证明上述命题;
(2)请你就数列{an}、{bn}是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.

查看答案和解析>>

我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{an}、{bn}是两个等差数列,它们的前n项的和分别是Sn,Tn,则
an
bn
=
S2n-1
T2n-1

(1)请你证明上述命题;
(2)请你就数列{an}、{bn}是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.

查看答案和解析>>

我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{an}、
{bn}是两个等差数列,它们的前n项的和分别是Sn,Tn,则
(1)请你证明上述命题;
(2)请你就数列{an}、{bn}是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.

查看答案和解析>>

对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
;   ②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n、(n=1,2,3,4,5),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且,证明:数列{Sn}具有“性质m”,并指出M的取值范围;
(3)若数列{dn}的通项公式(n∈N*).对于任意的n≥3(n∈N*).

查看答案和解析>>


同步练习册答案