各类证明的依据:①线面平行;;, ②线线平行:;;; ③面面平行:;; ④线线垂直:;所成角900,;逆定理? ⑤线面垂直:;;; ⑥面面垂直:二面角900; ; 高中数学基础知识归类 --献给2009年赣马高级中学高三考生 查看更多

 

题目列表(包括答案和解析)

定义域为的函数f(x)=2x-2-x,g(x)=2x+2-x
(1)请分别指出函数y=f(x)与函数y=g(x)的奇偶性、单调区间、值域和零点;(将结论填入答题卡,不必证)
(2)设h(x)=
f(x)g(x)
,请判断函数y=h(x)的奇偶性、单调区间,并证明你的结论.(必要时,可以(1)中的结论作为推理与证明的依据)

查看答案和解析>>

梯形中位线是梯形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明梯形中位线定理呢?梯形中位线定理与三角形中位线定理有什么内在联系?

查看答案和解析>>

三角形中位线是三角形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明三角形中位线定理呢?

查看答案和解析>>

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:
精英家教网
根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

如图,倾斜角为α的直线经过抛物线y2=4x的焦点,且与抛物线交于A、B两点,Q为A、B中点,
(1)求抛物线的焦点坐标及准线l方程;  
(2)若α≠
π2
,作线段AB的垂直平分线m交x轴于点P,证明:|AB|=2|PF|.

查看答案和解析>>


同步练习册答案