设正数数列{an}为一等比数列.且a2=4.a4=16.求. 查看更多

 

题目列表(包括答案和解析)

设正数数列{an}为等比数列,a2=4,a4=16.
(1)求
lim
n→∞
lga1+lga2+…lgan
n2

(2)记bn=2•log2an,证明:对任意的n∈N*,有
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.

查看答案和解析>>

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

设正数数列{an}的前n项之和为Sn满足Sn=(
an+1
2
)2

①先求出a1,a2,a3,a4的值,然后猜想数列{an}的通项公式,并用数学归纳法加以证明.
②设bn=
1
anan+1
,数列{bn}的前n项和为Tn

查看答案和解析>>

设正数数列{an}前n项和为Sn,且对所有自然数n,有
Sn
=
1+an
2
,则通过归纳猜测可得到Sn=
n2
n2

查看答案和解析>>

设正数数列{an}的前n项和为Sn,且Sn=
1
2
(an+
1
an
)
(n∈N+),试求a1、a2、a3,并猜想an,然后用数学归纳法进行证明.

查看答案和解析>>


同步练习册答案