2.导数的运算 ① 能根据导数定义.求函数的导数. ② 能利用表1给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b))的导数. 表1:常见基本初等函数的导数公式和常用导数运算公式: (C为常数),, n∈N+,, ; ; ; ; . 法则1 . 法则2 . 法则3 . 查看更多

 

题目列表(包括答案和解析)

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>

(本小题满分12分)

已知函数

(1)求;         (2)求的最大值与最小值.

【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。

第二问中,利用第一问的导数,令导数为零,得到

然后结合导数,函数的关系判定函数的单调性,求解最值即可。

 

查看答案和解析>>

导数的运算?

       (1)(C)′=     (C为常数).?

       (2)(xn)′=     (n∈N*).?

       (3)(ax)′=     .?

       (4)(ex)′=     .?

       (5)(logax)′=     .?

       (6)(lnx)′=     .?

       (7)(sinx)′=     .?

       (8)(cosx)′=     .?

       (9)[±]′=     .?

       (10)[·]′=     .?

       (11)[]′=     〔g(x)≠0〕.

      

查看答案和解析>>

导数的运算法则

[f(x)±g(x)=_________;

[f(x)·g(x)=_________;

[=_________(g(x)≠0).

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>


同步练习册答案