题目列表(包括答案和解析)
(本小题满分16分)设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,
记bn= (n∈N*)
(1)求数列{an}与数列{bn}的通项公式;
(2)记cn=b2n-b2n−1 (n∈N*) , 设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn<;
(3)设数列{bn}的前n项和为Rn,是否存在正整数k,使得Rk≥4k成立?若存在,找出一个正整数k;
若不存在,请说明理由;
(本小题满分16分)设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn= (n∈N*)
(1)求数列{an}与数列{bn}的通项公式;
(2)记cn=b2n-b2n−1 (n∈N*) , 设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn<;
(3)设数列{bn}的前n项和为Rn,是否存在正整数k,使得Rk≥4k成立?若存在,找出一个正整数k;
若不存在,请说明理由;
设M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1;以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:
当n=1时,
;Ks当n=2时,
;当n=3时,
;
当n=4时,
;当n=5时,
;……,
则推测一个一般的结论:对于n∈N*,
.
已知数列{
}满足
=1,
=3
,数列{
}的前n项和
=n2+2n+1.
(Ⅰ)求数列{
},{
}的通项公式;
(Ⅱ)设
=![]()
,求数列{
}的前n项和
.
| C | m n |
| n |
| m |
| C | m-1 n-1 |
| (1+x)[1-(1+x)n] |
| 1-(1+x) |
| (1+x)n+1-(1+x) |
| x |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com