当a>1时.Sn>logabn+1 查看更多

 

题目列表(包括答案和解析)

等差数列{an}的前n项和为Sn,公差d<0,若存在正整数m(m>1)使am=Sm,则当n>m时,Sn与an的大小关系为(  )

查看答案和解析>>

已知函数f(x)=logax(a>0且a≠1)及数列{an}.
使得2,f(a1),f(a2),…,f(a1),2n+4构成等差数列(n=1,2,…).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前n项和为Sn,当0<a<1时,求
limn→∞
Sn

(Ⅲ)若bn=an•f(an),当a>1时,试比较bn与bn+1的大小.

查看答案和解析>>

已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并写出适合条件的函数f(x)的一个解析式;
(2)数列{an}满足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通项公式an的表达式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
4
3
Tn
的大小,并加以证明;
③当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
对于不小于2的正整数n恒成立,求x的取值范围.

查看答案和解析>>

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N?),数列{bn}的首项,b1=a,bn=an+n2(n≥2,n∈N?).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>


同步练习册答案