在已知等比数列中任意两项的前提下.使用an=amqn-m可求等比数列中任意一项. 查看更多

 

题目列表(包括答案和解析)

已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定t的值,使得数列{bn}为等差数列;
(3)当{bn}为等差数列时,对任意正整数k,在ak与ak+1之间插入2共bk个,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tn=2cm+1的所有正整数m的值.

查看答案和解析>>

已知等比数列{an} 的各项均为正数,且公比不等于1,数列{bn}对任意正整数n,均有:(bn+1-bn+2)•log2a1+(bn+2-bn)•log2a3+(bn-bn+1)•log2a5=0 成立,b1=1,b7=13;
(1)求数列{bn}的通项公式及前n项和Sn
(2)在数列{bn}中依次取出第1项,第2项,第4项,第8项,…,第2n-1项,…,组成一个新数列 {cn},求数列 {cn}的前n项和Tn
(3)对(1)(2)中的Sn、Tn,当n≥3时,比较Tn与Sn的大小.

查看答案和解析>>

 已知等比数列的首项为,公比为为正整数),且满足的等差中项;数列满足).

(1)求数列的通项公式;

(2)试确定的值,使得数列为等差数列;

(3)当为等差数列时,对任意正整数,在之间插入2共个,得到一个新数列.设是数列 的前项和,试求满足的所有正整数的值。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(14分)已知等比数列的各项均为正数,且公比不等于1,数列对任意正整数n,均有: 

成立,又

(Ⅰ)求数列的通项公式及前n项和

(Ⅱ)在数列中依次取出第1项,第2项,第4项,第8项,……,第项,……,组成一个新数列,求数列的前n项和

(Ⅲ)当时,比较的大小。

查看答案和解析>>

已知等比数列{an} 的各项均为正数,且公比不等于1,数列{bn}对任意正整数n,均有:(bn+1-bn+2)•log2a1+(bn+2-bn)•log2a3+(bn-bn+1)•log2a5=0 成立,b1=1,b7=13;
(1)求数列{bn}的通项公式及前n项和Sn
(2)在数列{bn}中依次取出第1项,第2项,第4项,第8项,…,第2n-1项,…,组成一个新数列 {cn},求数列 {cn}的前n项和Tn
(3)对(1)(2)中的Sn、Tn,当n≥3时,比较Tn与Sn的大小.

查看答案和解析>>


同步练习册答案