题目列表(包括答案和解析)
(07年四川卷文)(12分)设函数![]()
为奇函数,其图象在点
处的切线与直线
垂直,导函数
的最小值为
.
(Ⅰ)求
,
,
的值;
(Ⅱ)求函数
的单调递增区间,并求函数
在
上的最大值和最小值.
(文)设函数
在定义域内可导,
的图象如图,
则导函数
的图象可能为
![]()
(08年安徽卷文)设函数
,则
:
A.有最大值 B.有最小值 C.是增函数 D.是减函数
(08年银川一中一模文) (12分)设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(1)求f(x)的最小值h(t);
(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
(1)求点P的轨迹曲线C的方程;
(2)设曲线C与直线l:x+y=1相交于两个不同的点A、B,求曲线C的离心率e的取值范围;
(3)设曲线C与直线l:x+y=1相交于两个不同的点A、B,O为坐标原点,且
=-3,求a的值.
(文)设函数f(x)=
x3+2ax2-3a2x+
a(0<a<1).
(1)求函数f(x)的单调区间;
(2)若当x∈[a,2]时,恒有f(x)≤0,试确定实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com