解:因为w为复数.argw=.所以设w=r(cos+isin). 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

若方程sinwx=1(w>0,0≤x≤2)至少有50个解,则w的最小值为
197
4
π
197
4
π

查看答案和解析>>

已知z、w、x为复数,且x=(1+3i)•z,w=
z
2+i
且|w|=5
2

(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.

查看答案和解析>>

设函数f(x)=lnxgx)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]

(Ⅰ)求a、b的值; 

(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]

【解析】第一问解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

第二问,由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

解:因为f(x)=lnxgx)=ax+

则其导数为

由题意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的减函数,而F(1)=0,            …………9分

∴当时,,有;当时,,有;当x=1时,,有

 

查看答案和解析>>

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>


同步练习册答案