回顾初中根式的概念:如果一个数的平方等于a.那么这个数叫做a的平方根,如果一个数的立方等于a.那么这个数叫做a的立方根. → 记法: 查看更多

 

题目列表(包括答案和解析)

函数概念的发展历程

  17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.

  “function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.

  莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.

  当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.

  随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.

  综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.

你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?

1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?

2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?

查看答案和解析>>

高中阶段学习的函数的概念和初中阶段学习的函数的概念有什么异同?

查看答案和解析>>

在初中,我们已经学过锐角三角函数的定义,在Rt△ABC中,设∠C为直角,则有

sinA=

cosA=

tanA=

请同学们想想角的概念扩充以后,任意的角还有三角函数吗?如果有,又如何求任意角的三角函数值呢?

查看答案和解析>>

某县教研室要分析学生初中升学的数学成绩对高一年级数学成绩有什么影响,在高一年级学生中随机抽选10名学生,分析他们入学的数学成绩和高一年级期末数学考试成绩(如下表):
学生编号 1 2 3 4 5
入学成绩x 63 67 75 88 85
高一期末成绩y 65 77 80 82 92
(1)对变量x与y进行相关性检验,如果x与y之间具有线性相关关系,求出线性回归方程;
(2)若某学生入学数学成绩是80分,试估测他高一期末数学考试成绩.

查看答案和解析>>

在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是
x2
|an|
+
y2
4
=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;   
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.

查看答案和解析>>


同步练习册答案