灵活运用绝对值不等式两个重要性质定理.特别关注等号成立的条件. 同步练习 6.6含绝对值的不等式 [选择题] 查看更多

 

题目列表(包括答案和解析)

解不等式:

【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。

解:方法一:零点分段讨论:   方法二:数形结合法:

 

查看答案和解析>>

绝对值不等式|x-2|<x2的解集是
(-∞,-2)∪(1,+∞)
(-∞,-2)∪(1,+∞)

查看答案和解析>>

(2006•宝山区二模)给出函数f(x)=
x2+4
+tx
(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
1
2
时,可以将f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
g(x)
+h(x)
,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>

A={x||x-1|<2},B={x|>0},则AB等于

A.{x|-1<x<3}                                                B.{x|x<0或x>2}

C.{x|-1<x<0}                                                 D.{x|-1<x<0或2<x<3}

本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.

查看答案和解析>>

解关于x的不等式|2x+m|<xm(x∈R).

本题考查含有绝对值不等式的解法.解题关键是对m进行分类讨论.

查看答案和解析>>


同步练习册答案