解:(1)如图:.,(2) (b.a) , 得.D 关于直线l的对称点的坐标为.连接E交直线l于点Q.此时点Q到D.E两点的距离之和最小 设过 .E的设直线的解析式为.则 .∴.∴.由得 .∴所求Q点的坐标为(.) 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,
3
)在y轴的正半轴上,A、B是x轴上是两点,且OA:OB=3:1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.
(1)求过A、B、C三点的抛物线的解析式;
(2)请猜想:直线EF与两圆有怎样的位置关系并证明你的猜想;
(3)在△AOC中,设点M是AC边上的一个动点,过M作MN∥AB交OC于点N.试问:精英家教网在x轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,矩形OEFG的顶点F坐标为(4,2),OG边与y轴重合.将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△NPO是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM的位置关系,并说明理由;
(4)在GF所在直线上,是否存在一点Q,使△AOQ为等腰三角形?若存在,请直接写出所有满足要求的Q点坐标.

查看答案和解析>>

如图1,小明将一张长为4、宽为3的矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用点F表示)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4中△A1FG的位置,其中点B与点F 重合,请你求出平移的距离
3
3

(2)在图5中若∠GFD=60°,则图3中的△ABF绕点
F
F
顺时针
顺时针
方向旋转
30°
30°
到图5的位置
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,试问:△AEH和△HB1D的面积大小关系.说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,矩形OEFG的顶点F坐标为(4,2),OG边与y轴重合.将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△NPO是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM的位置关系,并说明理由;
(4)在GF所在直线上,是否存在一点Q,使△AOQ为等腰三角形?若存在,请直接写出所有满足要求的Q点坐标.

查看答案和解析>>

如图,抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M直线数学公式分别与x轴、y轴相交于B、C两点,并且与直线AM相交于点N.
(1)填空:试用含a的代数式分别表示点M与N的坐标,则M______,N______;
(2)若点N关于y轴的对称点N′恰好落在抛物线上,求此时抛物线的解析式;
(3)在抛物线y=x2-2x+a(a<0)上是否存在点P.使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案