题目列表(包括答案和解析)
(1)(C)′= (C为常数).?
(2)(xn)′= (n∈N*).?
(3)(ax)′= .?
(4)(ex)′= .?
(5)(logax)′= .?
(6)(lnx)′= .?
(7)(sinx)′= .?
(8)(cosx)′= .?
(9)[
±
]′= .?
(10)[
·
]′= .?
(11)[
]′= 〔g(x)≠0〕.
(本小题满分12分)
已知函数
;
(1)求
; (2)求
的最大值与最小值.
【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。
第二问中,利用第一问的导数,令导数为零,得到![]()
然后结合导数,函数的关系判定函数的单调性,求解最值即可。
导数的运算法则
[f(x)±g(x)
=_________;
[f(x)·g(x)
=_________;
[![]()
=_________(g(x)≠0).
已知函数
其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。
【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
函数y=f(x)在
处的导数
的几何意义是
[ ]
A.在点
处切线的斜率
B.在点(
,
)处的切线与x轴所夹锐角的正切值
C.点(
,
)处与点(0,0)连线的斜率
D.曲线y=f(x)在点(
,
)处切线的斜率
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com