题目列表(包括答案和解析)
(本小题满分12分) 海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天从0时至24时的时间
(单位:时)与水深y(单位:米)的关系表:
|
| 0:00 | 3:00 | 6:00 | 9: 00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
|
| 12.0 | 15.0 | 12.0 | 9.0 | 12.0 | 15.0 | 12.0 | 9.0 | 12.0 |
(1)请选用一个函数来近似描述这个港口的水深与时间的函数关系;
(2)一条货轮的吃水深度(船体最低点与水面的距离)为12米,安全条例规定船体最低点与
洋底间隙至少要有1.5米,请问该船何时能进出港口?在港口最多能停留多长时间?
| 3 | 4 |
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.
已知负数
和正数
,且对任意的正整数n,当
≥0时, 有[
,
]=
[
,
];当
<0时, 有[
,
]= [
, ![]()
].
(1)求证数列{
}是等比数列;
(2)若
,求证![]()
;
(3)是否存在
,使得数列
为常数数列?请说明理由
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形
中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:
与
的关系为
;
(2)设
,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点![]()
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数
为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
(本题满分18分,第1小题6分,第2小题6分,第3小题6分)
对于定义在D上的函数
,若同时满足
(Ⅰ)存在闭区间
,使得任取
,都有
是常数);
(Ⅱ)对于D内任意
,当
时总有
,则称
为“平底型”函数。
(1)判断
是否是“平底型”函数?简要说明理由;
(2)设
是(1)中的“平底型”函数,若
,对一切
恒成立,求实数
的范围;
(3)若
是“平底型”函数,求
和
满足的条件,并说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com