导数的运算法则: 复合函数的导数:首先要弄清复合函数的复合关系.它的求导法则是:复合函数对自变量的导数.等于已知函数对中间变量的导数乘以中间变量对自变量的导数.即 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数

(1)求;         (2)求的最大值与最小值.

【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。

第二问中,利用第一问的导数,令导数为零,得到

然后结合导数,函数的关系判定函数的单调性,求解最值即可。

 

查看答案和解析>>

导数的运算法则

[f(x)±g(x)=_________;

[f(x)·g(x)=_________;

[=_________(g(x)≠0).

查看答案和解析>>

已知函数其中a>0.

(I)求函数f(x)的单调区间;

(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。

【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.

 

查看答案和解析>>

导数的运算?

       (1)(C)′=     (C为常数).?

       (2)(xn)′=     (n∈N*).?

       (3)(ax)′=     .?

       (4)(ex)′=     .?

       (5)(logax)′=     .?

       (6)(lnx)′=     .?

       (7)(sinx)′=     .?

       (8)(cosx)′=     .?

       (9)[±]′=     .?

       (10)[·]′=     .?

       (11)[]′=     〔g(x)≠0〕.

      

查看答案和解析>>

函数的和、差、积、商的求导法则

(1)法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:_________.

(2)法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数,即:_________.

(3)常数与函数的积的导数等于常数乘以函数的导数,即:_________.

(4)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即:_________.

查看答案和解析>>


同步练习册答案