定理4::设为大于1的自然数.(1.2.-.)为任意实数.则:.其中等号当且仅当时成立(当时.约定.1.2.-.). 证明:构造二次函数: 即构造了一个二次函数: 由于对任意实数.恒成立.则其. 即:. 即:. 等号当且仅当. 即等号当且仅当时成立(当时.约定.1.2.-.).如果()全为0.结论显然成立. 柯西不等式有两个很好的变式: 变式1 设 .等号成立当且仅当 变式2 设ai.bi同号且不为0.则:.等号成立当且仅当. 查看更多

 

题目列表(包括答案和解析)

(2012•厦门模拟)本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知e1=
1
1
是矩阵M=
a
 1
0
 b
属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若a=
2
1
,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
AB
为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知是矩阵属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,||为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求的最小值.

查看答案和解析>>

6、二维形式的柯西不等式可用(  )表示.

查看答案和解析>>

23、课本小结与复习的参考例题中,给大家分别用“综合法”,“比较法”和“分析法”证明了不等式:已知a,b,c,d都是实数,且a2+b2=1,c2+d2=1,则|ac+bd|≤1.这就是著名的柯西(Cauchy.法国)不等式当n=2时的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等号当且仅当ad=bc时成立.
请分别用中文语言和数学语言简洁地叙述柯西不等式,并用一种方法加以证明.

查看答案和解析>>

对于平面内的命题:“△ABC内接于圆O,圆O的半径为R,且O点在△ABC内,连接AO,BO,CO并延长分别交对边于A1,B1,C1,则AA1+BB1+CC1
9R
2
”.
证明如下:
OA1
AA1
+
OB1
BB1
+
OC1
CC1
=
S△OBC
S△ABC
+
S△OAC
S△ABC
+
S△OAB
S△ABC
=1

即:
AA1-R
AA1
+
BB1-R
BB1
+
CC1-R
CC1
=1
,即
1
AA1
+
1
BB1
+
1
CC1
=
2
R

由柯西不等式,得(AA1+BB1+CC1)(
1
AA1
+
1
BB1
+
1
CC1
)≥9
.∴AA1+BB1+CC1
9R
2

将平面问题推广到空间,就得到命题“四面体ABCD内接于半径为R的球O内,球心O在该四面体内,连接AO,BO,CO,DO并延长分别与对面交于A1,B1,C1,D1,则
AA1+BB1+CC1+DD1
16R
3
AA1+BB1+CC1+DD1
16R
3
”.

查看答案和解析>>


同步练习册答案