17.函数的单调性 (1)设那么 上是增函数, 上是减函数. (2)设函数在某个区间内可导.如果.则为增函数,如果.则为减函数. 如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数. 查看更多

 

题目列表(包括答案和解析)

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,] 上是减函数,在[,+∞)上是增函数,
(1)如果函数y=x+(x>0)在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值;
(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+(c>0)的单调性,并说明理由。

查看答案和解析>>

已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由。

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+在(0,4]上是减函数,在[4,+∞)上是增函数,求实常数b的值;

(2)设常数c∈[1,4],求函数f(x)=x+,x∈[1,2]的最大值和最小值;

(3)当n是正整数时,研究函数g(x)=xn+(c>0)的单调性,并说明理由.

查看答案和解析>>

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上为减函数,在[,+∞)上是增函数.

(1)如果函数y=x+在(0,4]上是减函数.在[4,+∞)上是增函数,求实常数b的值;

(2)设常数c∈[1,4],求函数f(x)=x+,x∈[1,2]的最大值和最小值;

(3)当n是正整数时,研究函数y(x)=xn(c>0)的单调性,并说明理由.

查看答案和解析>>

已知函数yx有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数yx在(0,4]上是减函数,在[4,+∞)上是增函数,求实常数b的值;

(2)设常数c∈[1,4],求函数f(x)=xx∈[1,2]的最大值和最小值;

(3)当n是正整数时,研究函数g(x)=xn(c>0)的单调性,并说明理由.

查看答案和解析>>


同步练习册答案