24. 查看更多

 

题目列表(包括答案和解析)

(本小题满分6分,请在下列两个小题中,任选其一完成即可)
(1)解方程:x2+3x-2=0;
(2)如图,在边长为1个单位长度的正方形方格纸中建立直角坐标系,△ABC各顶点的坐标为:A(-5,4)、B(-1,1)、C(-5,1).
①将△ABC绕着原点O顺时针旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
②写出A′点的坐标.

查看答案和解析>>

25.(本小题满分14分)

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

(本小题满分5分)计算 : 

 

查看答案和解析>>

(本小题满分12分)如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线过点、点,且与轴的另一交点为,其中>0,又点是抛物线的对称轴上一动点.

(1)求点的坐标,并在图1中的上找一点,使到点与点的距离之和最小;

(2)若△周长的最小值为,求抛物线的解析式及顶点的坐标;

(3)如图2,在线段上有一动点以每秒2个单位的速度从点向点移动(不与端点重合),过点轴于点,设移动的时间为秒,试把△的面积表示成时间的函数,当为何值时,有最大值,并求出最大值.

 

查看答案和解析>>

(本小题满分12分)

某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w(元)(利润 = 销售额-成本-附加费).

1.(1)当= 1000时,=        元/件,w =         元;

2.(2)分别求出wwx间的函数关系式(不必写x的取值范围);

3.(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;

4.(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?

参考公式:抛物线的顶点坐标是

 

查看答案和解析>>

一、选择题

1.A 2.B 3.C 4.B 5.B 6.C 7.C 8.A 9.B 10.D 11.B 12.C

二、填空题

13.9  14.  15. BD=CD,OE=OF,DE∥AC等  16.4  17.15

三、解答题

18.

(1)解:   ................................................ 1分

   ...................................................... 2分

  ....................................................... 3分

(2)解:解①得>-2  ................................................ 4分

解②得<3  .................................................. 5分

∴此不等式组的解集是-2<x<3    ................................... 6分

解集在数轴上表示正确  .............................................. 7分

19.

(1)证明:∵AB∥DE,∴∠B=∠DEF

∵AC∥DF,∴∠F=∠ACB  ............................................ 1分

∵BE=CF,∴BE+EC= CF + EC即BC=EF   ............................... 2分

∴△ABC≌△DEF

∴AB=DE............................. 3分

(2)解:过点O作OG⊥AP于点G

连接OF  ........................... 4分

∵ DB=10,∴ OD=5

∴ AO=AD+OD=3+5=8

∵∠PAC=30°

∴ OG=AO=cm............... 5分

∵ OG⊥EF,∴ EG=GF

∵ GF= 

∴ EF=6cm  ......................... 7分

20.解:组成的所有坐标列树状图为:

 

.................... 5分

或列表为:

.................... 5分

方法一:根据已知的数据,点不在第二象限的概率为

方法二:1-  ................................................. 8分

21.解:设康乃馨每支元,水仙花每支元   ............................. 1分

由题意得:    ......................................... 4分

解得:  ..................................................... 6分

第三束花的价格为  ................................ 7分

答:第三束花的价格是17元.   ...................................... 8分

22.解:(1)设CD为千米,

由题意得,∠CBD=30°,∠CAD=45°

∴AD=CD=x  .................... 1分

在Rt△BCD中,tan30°=

∴ BD=  ................... 2分

AD+DB=AB=40

  ............... 3分

解得 ≈14.7

∴ 牧民区到公路的最短距离CD为14.7千米.  ......................... 4分

(若用分母有理化得到CD=14.6千米,可得4分)

(2)设汽车在草地上行驶的速度为,则在公路上行驶的速度为3

在Rt△ADC中,∠CAD=45°,∴ AC=CD

方案I用的时间........................ 5分

方案II用的时间..................................... 6分

= .................................................... 7分

>0

>0  ...................................................... 8分

∴方案I用的时间少,方案I比较合理  ............................... 9分

23.解:(1)  .......................................... 1分

解得:   .................................................. 2分

∴点P的坐标为(2,)  ........................................... 3分

(2)将代入

,即OA=4................................................... 4分

做PD⊥OA于D,则OD=2,PD=2

∵ tan∠POA=

∴ ∠POA=60°   ................................................... 5分

∵ OP=

∴△POA是等边三角形.  ............ 6分

 

(3)① 当0<t≤4时,如图1

在Rt△EOF中,∵∠EOF=60°,OE=t

∴EF=t,OF=t

∴S=?OF?EF=.............. 7分

当4<t<8时,如图2

设EB与OP相交于点C

易知:CE=PE=t-4,AE=8-t

∴AF=4-,EF=(8-t)  

∴OF=OA-AF=4-(4-t)=t

∴S=(CE+OF)?EF

=(t-4+t)×(8-t)

=-+4t-8................ 8分

② 当0<t≤4时,S=, t=4时,S最大=2

当4<t<8时,S=-+4t-8=-(t-)+ 

t=时,S最大=

>2,∴当t=时,S最大=........................... 9分

24.解:(1)设抛物线的解析式为  ......................... 1分

将A(-1,0)代入:       ∴   .................... 2分

∴ 抛物线的解析式为,即:.............. 3分

(2)是定值,  ........................................... 4分

∵ AB为直径,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE

∴ △APM∽△ABE,∴  ①

同理:   ②  .............................................. 5分

① + ②: .................................... 6分

(3)∵ 直线EC为抛物线对称轴,∴ EC垂直平分AB

∴ EA=EB

∵ ∠AEB=90°

∴ △AEB为等腰直角三角形.

∴ ∠EAB=∠EBA=45° ........... 7分

如图,过点P作PH⊥BE于H,

由已知及作法可知,四边形PHEM是矩形,

∴PH=ME且PH∥ME

在△APM和△PBH中

∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45°

∴ PH=BH

且△APM∽△PBH

 ①.......... 8分

在△MEP和△EGF中,

∵ PE⊥FG,  ∴ ∠FGE+∠SEG=90°

∵∠MEP+∠SEG=90°  ∴ ∠FGE=∠MEP

∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF

    ②

由①、②知:.............................................. 9分

(本题若按分类证明,只要合理,可给满分)

 

 

 

 

 


同步练习册答案