特值法不仅适合于解小题.许多大题也是首先从特值探讨入手的..例如将本题改编为大题.即要求学生不仅要找到正确答案.还要给予证明.先用特值探求则是明智之举.否则将多费几倍的劳力. 对于无须写出解题过程的选择题与填空题.无须进行繁文缛节的探究与证明.这不是不讲道理.而能够迅速找到正确的答案.就是最大的道理. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分

22.(本小题满分10分)选修4—1几何证明选讲

如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

   (I)求证:DE是⊙O的切线;

   (II)若的值.

 

23.(本小题满分10分)选修4—2坐标系与参数方程

        设直角坐标系原点与极坐标极点重合, x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为

   (I)求直线l的普通方程和曲线C的直角坐标方程;

   (II)求曲线C上的动点P到直线l的最大距离。

24.(本小题满分10分)选修4—5不等式选讲

        对于任意的实数恒成立,记实数M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

选做题:请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分
22.(本小题满分10分)选修4—1几何证明选讲
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。
(I)求证:DE是⊙O的切线;
(II)若的值.

23.(本小题满分10分)选修4—2坐标系与参数方程
设直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为,点F1、F2为其左、右焦点,直线l的参数方程为
(I)求直线l的普通方程和曲线C的直角坐标方程;
(II)求曲线C上的动点P到直线l的最大距离。
24.(本小题满分10分)选修4—5不等式选讲
对于任意的实数恒成立,记实数M的最大值是m
(1)求m的值;
(2)解不等式

查看答案和解析>>

用二分法求方程的近似解,下列有关叙述正确的是


  1. A.
    这种算法适用于任何方程求近似解
  2. B.
    这种算法的基本思想是逐渐缩小区间长度,直到满足精确度的要求
  3. C.
    当有解区间长度满足精确度要求后,只能用区间中点来作为方程的近似解
  4. D.
    当有解区间长度满足精确度要求后,可用区间内任一值作为方程的近似解

查看答案和解析>>


同步练习册答案