设数列的前项和为.若对所有的非零自然数.都有求证:为等差数列. 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

(2012•姜堰市模拟)可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

一.选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

B

D

D

B

D

A

C

C

A

A

二.填空题(每小题4分,共16分)

13.     14.    15.     16.  -  

三、解答题:(本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤).

17、(本小题满分12分)

解:由得:

(3分)

因为所以   所以  (6分)

由正弦定理得.      (8分)  从而由余弦定理及得:

    (12分)

18、(本小题满分12分)

解:(1)∵这支篮球队与其他各队比赛胜场的事件是相互独立的,

∴首次胜场前已负了两场的概率P=(1-)×(1-=.   4分

(2)设A表示这支篮球队在6场比赛中恰好胜了3场的事件,则P(A)就是6次独立重复试验中恰好发生3次的概率.∴P(A)=P6(3)=C()3(1-)3=.     8分

(3)设ξ表示这支篮球队在6场比赛中胜场数,则ξB(6,).

=6××(1-)=,Eξ=6×=2.

故这支篮球队在6场比赛中胜场数的期望是2,方差是.     12分

19、(本小题满分12分)

解: (4分)

,

  ( 6分)

时,时,,(9分)

时,

时, (11分)

综上,

文本框: 图2

所以,为等差数列.(12分)

20.(本题?分12分)

解 (1)如图2,将已知条件实现在长方体中,则直线与平面所成的角为,ks5u直线与平面所成角的为.在直角中,有,故=;在直角中,有

=.               6分

(2)如图2,作

               

设二面角的平面角为,则             

得:.                   12分

21、(本小题满分12分)

解:因为线段的两端点在抛物线上,故可设,设线段的中点,则            7分

所以:                              11分

所以,线段的中点的轨迹方程为.    12分

22、(本小题满分14分)

(1)解:f′(x)=3x2-6ax+b,

过P1(x1,y1)的切线方程是y-y1=f′(x1)(x-x1)(x1≠0).

又原点在直线上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),

解得x1=.       4分

(2)解:过Pn(xn,yn)的切线方程是y-yn=f′(xn)(x-xn).

又Pn+1 (xn+1,yn+1)在直线上,

所以(xn+1-xn)2(xn+1+2xn3a)=0.由xn≠xn+1,

解得xn+1+2xn3a=0.        10分

(3)证明:由(2)得xn+1-a=-2(xn-a),

所以数列{xn-a}是首项为x1-a=,公比为-2的等比数列.

∴xn=a+?(-2)n-1,

即xn=[1-(-2)n-2]a.

当n为正偶数时,xn<a;当n为正奇数时, xn>a.     14分

 

 

 

 


同步练习册答案