(理)已知函数 . (Ⅰ)当a = 0时.求的最小值, (Ⅱ)若在上是单调函数.求a的取值范围, (Ⅲ)设各项为正的无穷数列满足 证明:≤1(n∈N*). (文)设定义在R上的函数 ,当x=-1时,f(x)取极大值, 且函数y=f对称. 的表达式; 的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在上; (Ⅲ)设 ,求证:. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
已知函数的图像在点P(0,f(0))处的切线方程为.
(Ⅰ)求实数a,b的值;
(Ⅱ)设上的增函数.
(ⅰ)求实数m的最大值;
(ⅱ)当m取最大值时,是否存在点Q,使得过点Q的直线能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数)。

(I)求实数b的值;

(II)求函数f(x)的单调区间;

(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)
已知a,b为常数,且a≠0,函数(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>


同步练习册答案