(Ⅱ)证明:. 鞍山市2009年高三毕业班第二次质量调查考试 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

精英家教网如图,在底面边长为1,侧棱长为2的正四棱柱ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(Ⅰ)试确定m,使直线AP与平面BDD1B1所成角为60°;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.

查看答案和解析>>

证明:过抛物线y=a(x-x1)•(x-x2)(a≠0,x1<x2)上两点A(x1,0)、B(x2,0)的切线,与x轴所成的锐角相等.

查看答案和解析>>

精英家教网如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA1、AB的中点.
(Ⅰ)证明:直线EE1∥平面FCC1
(Ⅱ)求二面角B-FC1-C的余弦值.

查看答案和解析>>

等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(Ⅰ)求r的值.
(Ⅱ)当b=2时,记bn=2(log2an=1)(n∈N+),证明:对任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

 

一、选择题.(单项选择,5×12=60分.答案涂在答题卡上的相应位置.)

1.C  2. A  3. B  4. B  5. B  6. B  7. A  8. C  9.D  10. B  11.D  12. B

二、填空题.( 5×4=20分,答案写在答题纸的相应空格内.)

dyr232

三、解答题.(12×5+10=70分,答案写在答题纸的答题区内.)

17.(Ⅰ)∵ m?n                                                     ……… 2分

,解得                                              ……… 6分

(Ⅱ)           ……… 8分

,∴                                          ………10分

的值域为[]                                                       ………12分

 

18.(Ⅰ)把一根长度为8的铁丝截成3段,且三段的长度均为整数,共有21种解法.

(可视为8个相同的小球放入3个不同盒子,有种方法)   …   3分

其中能构成三角形的情况有3种情况:“2,3,3”、“3,2,3”、“3,3,2”

则所求的概率是                                                         ……… 6分

(Ⅱ)根据题意知随机变量                                               ……… 8分

              ……12分

19.(Ⅰ)∵点A、D分别是的中点,∴. …… 2分

∴∠=90º.∴.∴ ,                                                   

,∴⊥平面.                       ……… 4分

平面,∴.                                                ……… 5分

(Ⅱ)建立如图所示的空间直角坐标系

(-1,0,0),(-2,1,0),(0,0,1).

=(-1,1,0),=(1,0,1),  …6分

设平面的法向量为=(x,y,z),则:

,                                                     ……… 8分

,得,∴=(1,1,-1)

显然,是平面的一个法向量,=().       ………10分

∴cos<>=. 

∴二面角的平面角的余弦值是.                    ………12分

 

20.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由椭圆的对称性知:PRQS为菱形,原点O到各边距离相等………            5分

⑴当P在y轴上时,易知R在x轴上,此时PR方程为

.                                                       ……… 6分

⑵当P在x轴上时,易知R在y轴上,此时PR方程为

.                                                       ……… 7分

⑶当P不在坐标轴上时,设PQ斜率为k,

P在椭圆上,.......①;R在椭圆上,....

②利用Rt△POR可得            ……… 9分

即 

整理得 .                                               ………11分

再将①②带入,得

综上当时,有.                ………12分

 

21.(Ⅰ)时,单调递减,

单调递增。

①若无解;

②若

③若时,上单调递增,

所以                                               ……… 4分

(Ⅱ)

时,

单调递减,单调递增,

所以因为对一切

恒成立,所以;                                             ……… 8分

(Ⅲ)问题等价于证明

由(Ⅰ)可知

当且仅当时取到,设

,当且仅当时取到,

从而对一切成立.                ………12分

 

22.(Ⅰ)连接OC,∵OA=OB,CA=CB  ∴OC⊥AB∴AB是⊙O的切线         … 5分

(Ⅱ)∵ED是直径,∴∠ECD=90°∴∠E+∠EDC=90°

又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E

又∵∠CBD+∠EBC,∴△BCD∽△BEC       ∴  ∴BC2=BD•BE

∵tan∠CED=,∴∵△BCD∽△BEC, ∴

设BD=x,则BC=2      又BC2=BD•BE,∴(2x)2=x•(x+6)

解得x1=0,x2=2, ∵BD>0, ∴BD=2∴OA=OB=BD+OD=3+2=5    … 10分

 

23.(Ⅰ)                                                             …  5分

(Ⅱ)                                                                  … 10分

 

23.(Ⅰ)                                                                              …  5分

(Ⅱ)

                           … 10分