已知函数满足:.且其导数.a.b.. 查看更多

 

题目列表(包括答案和解析)

已知函数的定义域为R,其导数满足0<<1.设a是方程x的根.
(Ⅰ)当xa时,求证:x
(Ⅱ)求证:||<|x1x2|(x1x2∈R,x1x2);
(Ⅲ)试举一个定义域为R的函数,满足0<<1,且不为常数.

查看答案和解析>>

已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2-x)成立,且当x∈(-∞,1)时,(x-1)f′(x)<0(其中f'(x)为f(x)的导数).设a=f(0),b=f(
1
2
),c=f(3)
,则a、b、c三者的大小关系是(  )
A、a<b<c
B、c<a<b
C、c<b<a
D、b<c<a

查看答案和解析>>

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是(  )

查看答案和解析>>

已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中的导数).设,则a,b,c三者的大小关系是(   )

A.        B.        C.        D.

 

查看答案和解析>>

已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中的导数).设,则a,b,c三者的大小关系是(   )

A. B. C. D.

查看答案和解析>>

一、选择题:每小题5分,满分60.

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空题:每小题5分,满分20.

13.

14. 

15.

16.①③④

三、解答题

17.设两个实数为a,b,,建立平面直角坐标系aOb, 则点在正方形OABC内       ……… 2分

(Ⅰ) 记事件A“两数之和小于1.2”,即,则满足条件的点在多边形OAEFC内

所以                                    ……… 6分

(Ⅱ) 记事件B“两数的平方和小于0.25”,则满足条件的点在扇形内

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范围是         ………12分

19.(Ⅰ)连接,交,易知中点,故在△中,为边的中位线,故平面平面,所以∥平面            ……… 5分

(Ⅱ)在平面内过点,垂足为H

∵平面⊥平面,且平面∩平面

⊥平面,∴,                                 ……… 8分

又∵中点,∴

⊥平面,∴,又∵

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各项均为正数的等差数列,且公差

 ∴           ……… 3分

为常数,∴是等差数列           ……… 5分

(Ⅱ)∵,∴

是公差为1的等差数列                                       ……… 7分

,∴       ……… 9分

时,                                   ………10分

时,

综上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由椭圆的对称性知:PRQS为菱形,原点O到各边距离相等……… 5分

⑴当P在y轴上时,易知R在x轴上,此时PR方程为

.                                                       ……… 6分

⑵当P在x轴上时,易知R在y轴上,此时PR方程为

.                                                       ……… 7分

⑶当P不在坐标轴上时,设PQ斜率为k,

P在椭圆上,.......①;R在椭圆上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再将①②带入,得

综上当时,有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 变化情况如下表:

x

 

 

b

                                                                                            ……… 2分

∵函数上的最大值为1,

,此时应有

                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切线方程为                                             ……… 8分

(Ⅲ)                                   ………10分

     

∴当时,函数的无极值点

时,函数有两个极值点                 ………12分

 

 


同步练习册答案