3.利用向量处理角度问题 在立体几何中.涉及的角有异面直线所成的角.直线与平面所成的角.二面角等.关于角的计算.均可归结为两个向量的夹角.对于空间向量.有.利用这一结论.我们可以较方便地处理立体几何中的角的问题. 求异面直线所成的角的关键在于求异面直线上两向量的数量积.而要求两向量的数量积.可以求两向量的坐标.也可以把所求向量用一组基向量表示.两向量的夹角范围是.而两异面直线所成角的范围是.应注意加以区分. 直线与平面的夹角.是直线的方向向量与平面的法向量的夹角的余角.故有:.. 设分别是二面角的面的法向量.则<>就是所求二面角的平面角或其补角的大小. 查看更多

 

题目列表(包括答案和解析)

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

如图,四边形ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2
2
,E,F分别是AD,PC的中点.建立适当的空间坐标系,利用空间向量解答以下问题:
(Ⅰ)证明:PC⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小.

查看答案和解析>>

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.

查看答案和解析>>


同步练习册答案