1.二项式定理:. 叫展开式的通项,是第r+1项. 特例: 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)设f(x)=(1+x)n,f(x)展开式中x2的系数是10,求n的值;
(Ⅱ)利用二项式定理证明:
n
k=1
(-1)k+1k
C
k
n
=0

查看答案和解析>>

(1)以正方体的顶点为顶点,可以确定多少个四棱锥?
(2)黑暗中从3双尺码不同的鞋子中任意摸出3只,求摸出3只中有配成一双(事件A)的概率.
(3)利用二项式定理求1432013被12除所得的余数.

查看答案和解析>>

在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

(1)化简[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二项式定理计算(3.02)4,使误差小于千分之一.
(4)试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和.
(5)已知球的半径等于r,试求内接正方形的体积.
(6)已知a是三角形的一边,β及γ是这边的两邻角,试求另一边b的计算公式.

查看答案和解析>>

(
3
i-x)10
把二项式定理展开,展开式的第8项的系数是(  )
A、135
B、-135
C、-360
3
i
D、360
3
i

查看答案和解析>>


同步练习册答案