解:(1)当a=1时..其定义域是. ---------------------------------1分 令.即.解得或. ∵x>0.舍去. 当时.,当时.. ∴函数在区间(0.1)上单调递增.在区间上单调递减 ----------4分 ∴当x=1时.函数取得最大值.其值为. 当时..即. ∴函数只有一个零点. ---------------------6分 (2)因为其定义域为. 所以-----------------------7分 ①当a=0时.在区间上为增函数.不合题意----------8分 ②当a>0时.等价于.即. 此时的单调递减区间为. 依题意.得解之得 ---------------------------------10分 ③当a<0时.等价于.即· 此时的单调递减区间为. 得 综上.实数a的取值范围是 ---------------------------------12分 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)是定义域为R 的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当

-1≤x≤1时,f(x)=x3。则下列四个命题:①f(x)是以4为周期的周期函数;②f(x)在[1,3]上的解析式为f(x)=(2-x)3;③f(x)在处的切线方程为3x+4y-5=0;④f(x)的图像的对称轴中有x=±1.其中正确的命题是          (    )

       A.① ② ③    B.② ③  ④     C.① ③ ④       D.① ② ③ ④

查看答案和解析>>

已知函数f(x)=数学公式是定义在R上的奇函数,其值域为[-数学公式].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

查看答案和解析>>

已知函数f(x)=是定义在R上的奇函数,其值域为[-].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

查看答案和解析>>

已知函数f(x)=
x+a
x2+b
是定义在R上的奇函数,其值域为[-
1
4
1
4
].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

查看答案和解析>>

已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,f(x)=
1
e2x
-
a
ex
,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数g(x)=(
x2
a
+x-2-
3
a
)[e2x-f(x)]
,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).

查看答案和解析>>


同步练习册答案