精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+a
x2+b
是定义在R上的奇函数,其值域为[-
1
4
1
4
].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.
(1)由函数f(x)定义域为R,∴b>0.
又f(x)为奇函数,则f(-x)=-f(x)对x∈R恒成立,得a=0.(2分)
因为y=f(x)=
x
x2+b
的定义域为R,所以方程yx2-x+by=0在R上有解.
当y≠0时,由△≥0,得-
1
2
b
≤y≤
1
2
b

而f(x)的值域为[-
1
4
1
4
]
,所以
1
2
b
=
1
4
,解得b=4;
当y=0时,得x=0,可知b=4符合题意.所以b=4.(5分)
(2)①因为当x∈[0,3)时,g(x)=f(x)=
x
x2+4

所以当x∈[3,6)时,g(x)=g(x-3)lnm=
(x-3)lnm
(x-3)2+4
;(6分)
当x∈[6,9)时,g(x)=g(x-6)(lnm)2=
(x-6)(lnm)2
(x-6)2+4

g(x)=
(x-3)lnm
(x-3)2+4
    x∈[3,6)
(x-6)(lnm)2
(x-6)2+4
  x∈[6,9)
(9分)
②因为当x∈[0,3)时,g(x)=
x
x2+4
在x=2处取得最大值为
1
4
,在x=0处取得最小值为0,(10分)
所以当3n≤x<3n+3(n≥0,n∈Z)时,g(x)=
(x-3n)(lnm)2
(x-3n)2+4
分别在x=3n+2和x=3n处取得最值为
(lnm)n
4
与0.(11分)
(ⅰ) 当|lnm|>1时,g(6n+2)=
(lnm)2n
4
的值趋向无穷大,从而g(x)的值域不为闭区间;(12分)
(ⅱ) 当lnm=1时,由g(x+3)=g(x)得g(x)是以3为周期的函数,从而g(x)的值域为闭区间[0,
1
4
]
;(13分)
(ⅲ) 当lnm=-1时,由g(x+3)=-g(x)得g(x+6)=g(x),得g(x)是以6为周期的函数,
且当x∈[3,6)时g(x)=
-(x-3)
(x-3)2+4
值域为[-
1
4
,0]
,从而g(x)的值域为闭区间[-
1
4
1
4
]
;(14分)
(ⅳ) 当0<lnm<1时,由g(3n+2)=
(lnm)n
4
1
4
,得g(x)的值域为闭区间[0,
1
4
]
;(15分)
(ⅴ) 当-1<lnm<0时,由
lnm
4
≤g(3n+2)=
(lnm)n
4
1
4
,从而g(x)的值域为闭区间[-
lnm
4
1
4
]

综上知,当m∈[
1
e
,1]
∪(1,e],即0<lnm≤1或-1≤lnm<0时,g(x)的值域为闭区间.(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案