对于集合.一定要抓住集合的代表元素.及元素的“确定性.互异性.无序性 . 中元素各表示什么? 注重借助于数轴和文氏图解集合问题. 空集是一切集合的子集.是一切非空集合的真子集. 查看更多

 

题目列表(包括答案和解析)

(2012•浦东新区三模)已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).

查看答案和解析>>

已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).

查看答案和解析>>

已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).

查看答案和解析>>

(本小题满分14分)

已知集合.对于A的一个子集S,若存在不大于的正整数m,使得对于S中的任意一对元素,都有,则称S具有性质P.

(Ⅰ)当时,试判断集合是否具有性质P?并说明理由.

(Ⅱ)若

若集合S具有性质P,那么集合是否一定具有性质P?并说明理由;

若集合S具有性质P,求集合S中元素个数的最大值.

查看答案和解析>>

对于集合A,B,C,若A∪B=B∩C,则一定有

[  ]

A.A=B=C

B.

C.

D.以上都不对

查看答案和解析>>


同步练习册答案