题目列表(包括答案和解析)
| 3 |
| 3 |
|
| 2 |
| π |
| 4 |
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
|
| x2 |
| 4 |
|
| π |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com