注意:上述等号“= 成立的条件, 查看更多

 

题目列表(包括答案和解析)

设a、b是两个向量,对不等式0≤|a+b|≤|a|+|b|给出下列四个结论:
①不等式左端的不等号“≤”只能在a=b=0时取等号“=”;
②不等式左端的不等号“≤”只能在a与b不共线时取不等号“<”;
③不等式右端的不等号“≤”只能在a与b均非零且同向共线时取等号“=”;
④不等式右端的不等号“≤”只能在a与b不共线时取不等号“<”.

其中正确的结论有


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    4个

查看答案和解析>>

设n为自然数,f(n)=1++…+

(1)试证:若m、n∈N*且m<n,则f(n)≥f(m)+,并指出取等号的条件;

(2)计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,观察上述结果,推测一般的不等式,并用数学归纳法证明.

查看答案和解析>>

已知基本不等式:(a、b都是正实数,当且仅当a=b时等号成立)可以推广到n个正实数的情况,即对于n个正实数a1,a2,a3,…,an,有(当且仅当a1=a2=a3=…=an时,取等号).

同理,当a、b都是正实数时,(a+b)()≥2ab·2·=4,可以推导出结论:对于n个正实数a1,a2,a3,…,an有(a1+a2+a3)()≥________;(a1+a2+a3+a4)()≥________;(a1+a2+a3+…+an)(+…)≥________;

如果对于n个同号实数a1,a2,a3,…,an(同正或者同负),那么,根据上述结论,(a1+a2+a3+…+an)(+…)的取值范围是________.

查看答案和解析>>

一块边长为10cm的正方形铁片按如图1所示的虚线裁下剪开,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.

(1)试建立容器的容积V与x的函数关系式,并求出函数的定义域.
(2)记四棱锥(如图2)的侧面积为S′,定义
V
S′
为四棱锥形容器的容率比,容率比越大,用料越合理.
如果对任意的a,b∈R+,恒有如下结论:ab≤
a2+b2
2
,当且仅当a=b时取等号.试用上述结论求容率比的最大值,并求容率比最大时,该四棱锥的表面积.

查看答案和解析>>

请先阅读:
设平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夹角为θ,
因为
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)试求函数y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>


同步练习册答案