7.[答案]-9 [解析]画出满足不等式组的可行域如右图.目标函数化为:-z.画直线及其平行线.当此直线经过点A时.-z的值最大.z的值最小.A点坐标为(3,6).所以.z的最小值为:3-2×6=-9. 查看更多

 

题目列表(包括答案和解析)

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

在面积为9的正方形内部随机取一点,则能使的面积大于的概率是_________.

【答案】

【解析】 要使的面积大于,需满足点P到AB的距离大于1,且点P在正方形内,即点P应在四边形EFCD内,所以概率为

查看答案和解析>>

解析:由正视图、侧视图可知,此几何体的体积最小时,底层有5个小正方体,上面有2个小正方体,共7个小正方体;体积最大时,底层有9个小正方体,上面有2个小正方体,共11个小正方体,故这个几何体的最大体积与最小体积的差是4.

答案:C

查看答案和解析>>


同步练习册答案