1.等比数列的知识要点 (1)掌握等比数列定义=q(nN).同样是证明一个数列是等比数列的依据.也可由an·an+2=来判断, (2)等比数列的通项公式为an=a1·qn-1, (3)对于G 是a.b 的等差中项.则G2=ab.G=±, (4)特别要注意等比数列前n 项和公式应分为q=1与q≠1两类.当q=1时.Sn=na1.当q≠1时.Sn=.Sn=. 查看更多

 

题目列表(包括答案和解析)

 【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力 

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

如图所示是数列一章的知识结构图,下列说法正确的是(  )
精英家教网
A、“概念”与“分类”是从属关系B、“等差数列”与“等比数列”是从属关系C、“数列”与“等差数列”是从属关系D、“数列”与“等比数列”是从属关系,但“数列”与“分类”不是从属关系

查看答案和解析>>

已知是等差数列,其前n项和为是等比数列,且 

(I)求数列的通项公式;

(II)记求证:,

【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.

 

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=,求Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>


同步练习册答案